log format data inporting script
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
59f6526cca
commit
55279cd40d
59
k8s/job-templates/log-import-ctllog-job.yaml
Normal file
59
k8s/job-templates/log-import-ctllog-job.yaml
Normal file
|
|
@ -0,0 +1,59 @@
|
|||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: log-import-ctllog-job-{{JOB_ID}}
|
||||
namespace: {{NAMESPACE}}
|
||||
spec:
|
||||
ttlSecondsAfterFinished: 86400
|
||||
backoffLimit: 0
|
||||
template:
|
||||
spec:
|
||||
affinity:
|
||||
nodeAffinity:
|
||||
requiredDuringSchedulingIgnoredDuringExecution:
|
||||
nodeSelectorTerms:
|
||||
- matchExpressions:
|
||||
- key: {{JOB_HOST_KEY}}
|
||||
operator: In
|
||||
values:
|
||||
- {{JOB_HOST_NAME}}
|
||||
containers:
|
||||
- name: importer
|
||||
image: {{IMAGE_REPO}}/databridge:{{IMAGE_TAG}}
|
||||
args: ["--pipeline", "log_to_postgres_ctllog"]
|
||||
env:
|
||||
- name: DATA_PVC_MOUNT_PATH
|
||||
value: "/data"
|
||||
- name: DBF_INPUT_DIR
|
||||
value: "/data/dbf-input"
|
||||
- name: MAPPING_FILE
|
||||
value: "/data/disney-mapping-v2.xlsx"
|
||||
- name: DB_HOST
|
||||
value: "{{DB_HOST}}"
|
||||
- name: DB_PORT
|
||||
value: "{{DB_PORT}}"
|
||||
- name: DB_NAME
|
||||
value: "{{DB_NAME}}"
|
||||
- name: DB_USER
|
||||
value: "{{DB_USER}}"
|
||||
- name: DB_PASSWORD
|
||||
value: "{{DB_PASSWORD}}"
|
||||
- name: BATCH_SIZE
|
||||
value: "{{BATCH_SIZE}}"
|
||||
- name: LOG_LEVEL
|
||||
value: "{{LOG_LEVEL}}"
|
||||
volumeMounts:
|
||||
- name: data-volume
|
||||
mountPath: "/data"
|
||||
resources:
|
||||
requests:
|
||||
cpu: "500m"
|
||||
memory: "800Mi"
|
||||
limits:
|
||||
cpu: "1000m"
|
||||
memory: "1700Mi"
|
||||
volumes:
|
||||
- name: data-volume
|
||||
persistentVolumeClaim:
|
||||
claimName: {{DATA_PVC_NAME}}
|
||||
restartPolicy: Never
|
||||
55
scripts/deploy-log-import-ctllog-disney.sh
Normal file
55
scripts/deploy-log-import-ctllog-disney.sh
Normal file
|
|
@ -0,0 +1,55 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# 默认配置
|
||||
JOB_ID=$(date +%Y%m%d-%H%M%S)
|
||||
IMAGE_REPO=${IMAGE_REPO:-"harbor.dc.teramesh.cn/library/tools"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"dev"}
|
||||
BATCH_SIZE=${BATCH_SIZE:-"20"}
|
||||
LOG_LEVEL=${LOG_LEVEL:-"INFO"}
|
||||
DATA_PVC_NAME=${DATA_PVC_NAME:-"data-import-export-pvc"}
|
||||
JOB_HOST_KEY=${JOB_HOST_KEY:-"kubernetes.io/hostname"}
|
||||
JOB_HOST_NAME=${JOB_HOST_NAME:-"idrc-disney-1"}
|
||||
# 数据库配置(使用时需要修改)
|
||||
DB_HOST=${DB_HOST:-"db"}
|
||||
DB_PORT=${DB_PORT:-"6432"}
|
||||
DB_NAME=${DB_NAME:-"idrc"}
|
||||
DB_USER=${DB_USER:-"teramesh"}
|
||||
DB_PASSWORD=${DB_PASSWORD:-"2iqTCHwnf75stGBzM8le"}
|
||||
|
||||
NAMESPACE=${NAMESPACE:-"default"}
|
||||
|
||||
# 检查模板文件
|
||||
TEMPLATE_FILE="log-import-ctllog-job.yaml"
|
||||
if [ ! -f "$TEMPLATE_FILE" ]; then
|
||||
echo "Template file not found: $TEMPLATE_FILE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 直接替换模板变量(不使用envsubst)
|
||||
OUTPUT_FILE="log-import-ctllog-job-${JOB_ID}.yaml"
|
||||
sed -e "s|{{JOB_ID}}|$JOB_ID|g" \
|
||||
-e "s|{{NAMESPACE}}|$NAMESPACE|g" \
|
||||
-e "s|{{IMAGE_REPO}}|$IMAGE_REPO|g" \
|
||||
-e "s|{{IMAGE_TAG}}|$IMAGE_TAG|g" \
|
||||
-e "s|{{DATA_PVC_NAME}}|$DATA_PVC_NAME|g" \
|
||||
-e "s|{{JOB_HOST_KEY}}|$JOB_HOST_KEY|g" \
|
||||
-e "s|{{JOB_HOST_NAME}}|$JOB_HOST_NAME|g" \
|
||||
-e "s|{{DB_HOST}}|$DB_HOST|g" \
|
||||
-e "s|{{DB_PORT}}|$DB_PORT|g" \
|
||||
-e "s|{{DB_NAME}}|$DB_NAME|g" \
|
||||
-e "s|{{DB_USER}}|$DB_USER|g" \
|
||||
-e "s|{{DB_PASSWORD}}|$DB_PASSWORD|g" \
|
||||
-e "s|{{BATCH_SIZE}}|$BATCH_SIZE|g" \
|
||||
-e "s|{{LOG_LEVEL}}|$LOG_LEVEL|g" \
|
||||
"$TEMPLATE_FILE" > "$OUTPUT_FILE"
|
||||
|
||||
# 部署前验证
|
||||
echo "Validating generated YAML..."
|
||||
kubectl apply -f "$OUTPUT_FILE" -n "$NAMESPACE" --dry-run=client
|
||||
|
||||
# 部署Job
|
||||
kubectl apply -f "$OUTPUT_FILE" -n "$NAMESPACE"
|
||||
|
||||
echo "Job deployed in namespace $NAMESPACE: log-import-ctllog-job-${JOB_ID}"
|
||||
echo "To view logs: kubectl logs job/log-import-ctllog-job-${JOB_ID} -n $NAMESPACE"
|
||||
|
|
@ -15,20 +15,20 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
# todo:本地调试打开
|
||||
self.data_root = 'D:\disney_test'
|
||||
self.mapping_file = 'D:\disney_test\disney-mapping-v2.xlsx'
|
||||
# self.data_root = 'D:\disney_test'
|
||||
# self.mapping_file = 'D:\disney_test\disney-mapping-v2.xlsx'
|
||||
# todo:本地调试打开
|
||||
# self.data_root = os.getenv('DATA_PVC_MOUNT_PATH', '/data')
|
||||
# self.mapping_file = os.getenv('MAPPING_FILE')
|
||||
self.data_root = os.getenv('DATA_PVC_MOUNT_PATH', '/data')
|
||||
self.mapping_file = os.getenv('MAPPING_FILE')
|
||||
self.log_dir = os.getenv('DBF_INPUT_DIR', os.path.join(self.data_root, 'dbf-input'))
|
||||
|
||||
# todo:debug use
|
||||
self.csv_file_path = 'D:\disney_test\debug_controller_log_logformat.csv'
|
||||
# 初始化CSV文件
|
||||
if not os.path.exists(self.csv_file_path):
|
||||
with open(self.csv_file_path, 'w') as f:
|
||||
csv.writer(f).writerow(
|
||||
['created', 'control_group_controller_id', 'point_id', 'real_value'])
|
||||
# self.csv_file_path = 'D:\disney_test\debug_controller_log_logformat.csv'
|
||||
# # 初始化CSV文件
|
||||
# if not os.path.exists(self.csv_file_path):
|
||||
# with open(self.csv_file_path, 'w') as f:
|
||||
# csv.writer(f).writerow(
|
||||
# ['created', 'control_group_controller_id', 'point_id', 'real_value'])
|
||||
# todo:debug use
|
||||
|
||||
self.db = None
|
||||
|
|
@ -77,7 +77,7 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
'disney_device_point_name': row['disney_device_point_name'].strip(),
|
||||
'control_group_controller_id': int(row['control_group_controller_id']),
|
||||
'point_id': int(row['controller_point_id']),
|
||||
'control_group_name': row['control_group_name'].strip(),
|
||||
'control_group_name': row['control_group_name'],
|
||||
'control_group_id': int(row['control_group_id'])
|
||||
})
|
||||
|
||||
|
|
@ -93,8 +93,8 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
|
||||
# 连接数据库
|
||||
# todo:本地调试时关闭
|
||||
# db_config = self.config.get_database_config()
|
||||
# self.db = Database(**db_config)
|
||||
db_config = self.config.get_database_config()
|
||||
self.db = Database(**db_config)
|
||||
# todo:本地调试时关闭
|
||||
|
||||
# 处理文件
|
||||
|
|
@ -114,7 +114,7 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
|
||||
# 关闭数据库连接
|
||||
# todo:本地调试时关闭
|
||||
# self.db.disconnect()
|
||||
self.db.disconnect()
|
||||
# todo:本地调试时关闭
|
||||
return total_processed
|
||||
|
||||
|
|
@ -128,55 +128,55 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
def clean_header_debug(self, headers):
|
||||
"""带调试信息的列名清理"""
|
||||
cleaned_headers = []
|
||||
print(f"开始处理CSV列名,共 {len(headers)} 列")
|
||||
print(f"原始列名: {headers}")
|
||||
# print(f"开始处理CSV列名,共 {len(headers)} 列")
|
||||
# print(f"原始列名: {headers}")
|
||||
|
||||
for i, original_header in enumerate(headers):
|
||||
try:
|
||||
print(f"\n处理第 {i + 1}/{len(headers)} 列: '{original_header}'")
|
||||
# print(f"\n处理第 {i + 1}/{len(headers)} 列: '{original_header}'")
|
||||
|
||||
# 类型检查
|
||||
if not isinstance(original_header, str):
|
||||
print(f"警告: 列名不是字符串类型,类型为 {type(original_header)}")
|
||||
self.logger.info(f"警告: 列名不是字符串类型,类型为 {type(original_header)}")
|
||||
header_str = str(original_header)
|
||||
print(f"转换为字符串: '{header_str}'")
|
||||
self.logger.info(f"转换为字符串: '{header_str}'")
|
||||
else:
|
||||
header_str = original_header
|
||||
|
||||
# 长度信息
|
||||
orig_length = len(header_str)
|
||||
print(f"原始长度: {orig_length} 字符")
|
||||
# print(f"原始长度: {orig_length} 字符")
|
||||
|
||||
# 移除引号
|
||||
stripped = header_str.strip().strip("'").strip('"')
|
||||
stripped_length = len(stripped)
|
||||
print(f"移除引号后: '{stripped}' ({stripped_length} 字符)")
|
||||
# print(f"移除引号后: '{stripped}' ({stripped_length} 字符)")
|
||||
|
||||
# 移除括号内容
|
||||
cleaned = re.sub(r'\s*\([^)]*\)', '', stripped).strip()
|
||||
cleaned_length = len(cleaned)
|
||||
print(f"移除括号内容后: '{cleaned}' ({cleaned_length} 字符)")
|
||||
# print(f"移除括号内容后: '{cleaned}' ({cleaned_length} 字符)")
|
||||
|
||||
# 空值检查
|
||||
if not cleaned:
|
||||
print(f"警告: 清理后列名为空,使用原始值")
|
||||
self.logger.warning(f"警告: 清理后列名为空,使用原始值")
|
||||
cleaned = f"Column_{i + 1}"
|
||||
|
||||
cleaned_headers.append(cleaned)
|
||||
print(f"处理完成: '{original_header}' => '{cleaned}'")
|
||||
# print(f"处理完成: '{original_header}' => '{cleaned}'")
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n错误! 处理列名失败: '{original_header}'")
|
||||
print(f"错误详情: {str(e)}")
|
||||
print(f"使用原始列名作为后备")
|
||||
self.logger.error(f"\n错误! 处理列名失败: '{original_header}'")
|
||||
self.logger.error(f"错误详情: {str(e)}")
|
||||
self.logger.error(f"使用原始列名作为后备")
|
||||
|
||||
if original_header:
|
||||
cleaned_headers.append(original_header)
|
||||
else:
|
||||
cleaned_headers.append(f"Column_{i + 1}")
|
||||
|
||||
print(f"\n列名处理完成")
|
||||
print(f"清理后列名: {cleaned_headers}")
|
||||
# print(f"\n列名处理完成")
|
||||
self.logger.info(f"清理后列名: {cleaned_headers}")
|
||||
return cleaned_headers
|
||||
|
||||
def process_log_file(self, file_path, as_serial, device_id, mapping_dict):
|
||||
|
|
@ -203,6 +203,7 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
cleaned_headers = self.clean_header_debug(headers)
|
||||
|
||||
# 创建DictReader
|
||||
self.logger.info(f"start to read record in the Log file: {os.path.basename(file_path)} ")
|
||||
dict_reader = csv.DictReader(
|
||||
file,
|
||||
fieldnames=cleaned_headers
|
||||
|
|
@ -243,17 +244,6 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
clean_dt_str = dt_str.strip().strip("'").strip('"')
|
||||
record_time = datetime.strptime(clean_dt_str, '%Y-%m-%d %H:%M:%S')
|
||||
|
||||
# 检查日期变化
|
||||
record_date = record_time.date()
|
||||
if self.current_date is None:
|
||||
self.current_date = record_date
|
||||
elif record_date != self.current_date:
|
||||
# 日期变化时,处理前一天的缓存数据
|
||||
self.process_day_cache()
|
||||
self.current_date = record_date
|
||||
|
||||
hour_key = record_time.replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
# seq_id不再有作用,需要根据disney_device_point_name去记录里查找
|
||||
for mapping in mapping_dict[key]:
|
||||
data_field = mapping['disney_device_point_name']
|
||||
|
|
@ -267,21 +257,16 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
except ValueError:
|
||||
continue
|
||||
|
||||
# todo 改造一下,log格式的数据质量比较好,不需要这么复杂的处理,可以直接写入,按照pwc的处理即可
|
||||
# 创建分组键
|
||||
group_key = (
|
||||
mapping['control_group_controller_id'],
|
||||
mapping['point_id'],
|
||||
hour_key
|
||||
)
|
||||
|
||||
# 添加到分组缓存
|
||||
self.add_to_group_cache(group_key, record_time, float_value, mapping)
|
||||
cgc_id = mapping['control_group_controller_id']
|
||||
point_id = mapping['point_id']
|
||||
record_insert = (record_time, cgc_id, point_id, float_value)
|
||||
if record_insert not in self.seen:
|
||||
self.seen.add(record_insert)
|
||||
self.batch_data.append(record_insert)
|
||||
|
||||
# 检查批次大小
|
||||
if len(self.batch_data) >= self.batch_size:
|
||||
self.flush_batch()
|
||||
# todo 改造一下,log格式的数据质量比较好,不需要这么复杂的处理,可以直接写入,按照pwc的处理即可
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error processing record: {e}")
|
||||
|
|
@ -291,16 +276,25 @@ class LogToPostgresCtllogPipeline(BasePipeline):
|
|||
if not self.batch_data:
|
||||
return
|
||||
|
||||
# 实际插入数据库
|
||||
# self.db.execute_batch(
|
||||
# "INSERT INTO controller_log (created, control_group_controller_id, point_id, real_value) VALUES (%s, %s, %s, %s)",
|
||||
# [(data[0], data[1], data[2], data[3]) for data in self.batch_data]
|
||||
# )
|
||||
# todo: 实际插入数据库
|
||||
try:
|
||||
self.db.execute_batch(
|
||||
"""
|
||||
INSERT INTO controller_log (created, control_group_controller_id, point_id, real_value)
|
||||
VALUES (%s, %s, %s, %s)
|
||||
ON CONFLICT (created, control_group_controller_id, point_id)
|
||||
DO UPDATE SET real_value = EXCLUDED.real_value
|
||||
""",
|
||||
[(data[0], data[1], data[2], data[3]) for data in self.batch_data]
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Batch Insert data failed: {e}")
|
||||
# todo: 实际插入数据库
|
||||
|
||||
# todo: debug时写入CSV(调试用)
|
||||
with open(self.csv_file_path, "a", newline="") as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerows(self.batch_data)
|
||||
# with open(self.csv_file_path, "a", newline="") as f:
|
||||
# writer = csv.writer(f)
|
||||
# writer.writerows(self.batch_data)
|
||||
# todo: debug时写入CSV
|
||||
|
||||
# 更新处理记录数
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user