初始合入databridge,用于后续数据的导出导入
This commit is contained in:
commit
71045d7531
42
.drone.yml
Normal file
42
.drone.yml
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
kind: pipeline
|
||||
type: docker
|
||||
name: build_dev
|
||||
|
||||
trigger:
|
||||
event:
|
||||
- promote
|
||||
target:
|
||||
- dev
|
||||
|
||||
clone:
|
||||
disable: true
|
||||
|
||||
steps:
|
||||
|
||||
- name: clone
|
||||
image: harbor.dc.teramesh.cn/library/bitnami/git:latest
|
||||
pull: if-not-exists
|
||||
commands:
|
||||
- git clone $DRONE_REPO_LINK .
|
||||
- git checkout $DRONE_COMMIT
|
||||
|
||||
- name: build_dev
|
||||
image: harbor.dc.teramesh.cn/library/moby/buildkit:master
|
||||
pull: if-not-exists
|
||||
environment:
|
||||
PIP_INDEX_URL:
|
||||
from_secret: PIP_INDEX_URL
|
||||
HARBOR_DOCKER_AUTH:
|
||||
from_secret: HARBOR_DOCKER_AUTH
|
||||
commands:
|
||||
- mkdir -p ~/.docker
|
||||
- echo "$HARBOR_DOCKER_AUTH" > ~/.docker/config.json
|
||||
- >
|
||||
buildctl
|
||||
--addr tcp://buildkitd:1234
|
||||
build
|
||||
--frontend=dockerfile.v0
|
||||
--local context=app
|
||||
--local dockerfile=app
|
||||
--opt build-arg:PIP_INDEX_URL=$PIP_INDEX_URL
|
||||
--output type=image,"name=harbor.dc.teramesh.cn/idrc/tools/databridge:dev",push=true
|
||||
22
.gitignore
vendored
Normal file
22
.gitignore
vendored
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# Python
|
||||
__pycache__/
|
||||
*.pyc
|
||||
*.pyo
|
||||
*.pyd
|
||||
.python-version
|
||||
|
||||
# Environment files
|
||||
.env
|
||||
.venv/
|
||||
|
||||
# OS
|
||||
.DS_Store
|
||||
Thumbs.db
|
||||
|
||||
# IDE
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
*.egg-info/
|
||||
build/
|
||||
dist/
|
||||
24
Dockerfile
Normal file
24
Dockerfile
Normal file
|
|
@ -0,0 +1,24 @@
|
|||
FROM harbor.dc.teramesh.cn/library/deploybase-python:3.11-slim
|
||||
|
||||
# 设置环境变量
|
||||
ENV PYTHONUNBUFFERED=1 \
|
||||
PYTHONDONTWRITEBYTECODE=1
|
||||
|
||||
# 安装系统依赖
|
||||
RUN apt-get update && apt-get install -y \
|
||||
gcc \
|
||||
libpq-dev \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# 设置工作目录
|
||||
WORKDIR /app
|
||||
|
||||
# 复制依赖文件并安装
|
||||
COPY requirements.txt .
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# 复制应用代码
|
||||
COPY . .
|
||||
|
||||
# 设置入口点
|
||||
ENTRYPOINT ["python", "src/main.py"]
|
||||
27
README.md
Normal file
27
README.md
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
# Databridge - Data Pipeline System
|
||||
|
||||
Databridge is a flexible data pipeline system for processing and transferring data between various sources and destinations. It is designed to run on Kubernetes and supports multiple data processing pipelines.
|
||||
|
||||
## Features
|
||||
|
||||
- **DBF to PostgreSQL**: Import data from DBF files to PostgreSQL
|
||||
- **CSV Export**: Export data from PostgreSQL to CSV files
|
||||
- **Kubernetes Native**: Designed to run as Kubernetes Jobs
|
||||
- **ZFS Storage**: Supports ZFS persistent storage
|
||||
- **Parameterized Pipelines**: Flexible configuration via environment variables
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Kubernetes cluster
|
||||
- ZFS storage provisioner
|
||||
- PostgreSQL database
|
||||
|
||||
### Installation
|
||||
|
||||
1. **Deploy Storage Infrastructure**:
|
||||
```bash
|
||||
kubectl apply -f k8s/pv.yaml
|
||||
kubectl apply -f k8s/pvc.yaml
|
||||
kubectl apply -f k8s/rbac.yaml
|
||||
40
k8s/job-templates/csv-export-job.yaml
Normal file
40
k8s/job-templates/csv-export-job.yaml
Normal file
|
|
@ -0,0 +1,40 @@
|
|||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: csv-export-job-{{JOB_ID}}
|
||||
spec:
|
||||
ttlSecondsAfterFinished: 86400
|
||||
template:
|
||||
spec:
|
||||
containers:
|
||||
- name: exporter
|
||||
image: {{IMAGE_REPO}}/databridge:{{IMAGE_TAG}}
|
||||
args: ["--pipeline", "csv_export"]
|
||||
env:
|
||||
- name: DATA_PVC_MOUNT_PATH
|
||||
value: "/data"
|
||||
- name: OUTPUT_DIR
|
||||
value: "/data/csv-exports"
|
||||
- name: EXPORT_QUERY
|
||||
value: "{{EXPORT_QUERY}}"
|
||||
- name: DB_HOST
|
||||
value: "{{DB_HOST}}"
|
||||
- name: DB_PORT
|
||||
value: "{{DB_PORT}}"
|
||||
- name: DB_NAME
|
||||
value: "{{DB_NAME}}"
|
||||
- name: DB_USER
|
||||
value: "{{DB_USER}}"
|
||||
- name: DB_PASSWORD
|
||||
value: "{{DB_PASSWORD}}"
|
||||
- name: LOG_LEVEL
|
||||
value: "{{LOG_LEVEL}}"
|
||||
volumeMounts:
|
||||
- name: data-volume
|
||||
mountPath: "/data"
|
||||
volumes:
|
||||
- name: data-volume
|
||||
persistentVolumeClaim:
|
||||
claimName: {{DATA_PVC_NAME}}
|
||||
restartPolicy: Never
|
||||
backoffLimit: 1
|
||||
42
k8s/job-templates/dbf-import-job.yaml
Normal file
42
k8s/job-templates/dbf-import-job.yaml
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: dbf-import-job-{{JOB_ID}}
|
||||
spec:
|
||||
ttlSecondsAfterFinished: 86400
|
||||
template:
|
||||
spec:
|
||||
containers:
|
||||
- name: importer
|
||||
image: {{IMAGE_REPO}}/databridge:{{IMAGE_TAG}}
|
||||
args: ["--pipeline", "dbf_to_postgres"]
|
||||
env:
|
||||
- name: DATA_PVC_MOUNT_PATH
|
||||
value: "/data"
|
||||
- name: DBF_INPUT_DIR
|
||||
value: "/data/dbf-input"
|
||||
- name: MAPPING_FILE
|
||||
value: "/data/mapping.xlsx"
|
||||
- name: DB_HOST
|
||||
value: "{{DB_HOST}}"
|
||||
- name: DB_PORT
|
||||
value: "{{DB_PORT}}"
|
||||
- name: DB_NAME
|
||||
value: "{{DB_NAME}}"
|
||||
- name: DB_USER
|
||||
value: "{{DB_USER}}"
|
||||
- name: DB_PASSWORD
|
||||
value: "{{DB_PASSWORD}}"
|
||||
- name: BATCH_SIZE
|
||||
value: "{{BATCH_SIZE}}"
|
||||
- name: LOG_LEVEL
|
||||
value: "{{LOG_LEVEL}}"
|
||||
volumeMounts:
|
||||
- name: data-volume
|
||||
mountPath: "/data"
|
||||
volumes:
|
||||
- name: data-volume
|
||||
persistentVolumeClaim:
|
||||
claimName: {{DATA_PVC_NAME}}
|
||||
restartPolicy: Never
|
||||
backoffLimit: 1
|
||||
22
k8s/pv.yaml
Normal file
22
k8s/pv.yaml
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolume
|
||||
metadata:
|
||||
name: zfs-data-import-export-pv # 任意,但要保证唯一
|
||||
spec:
|
||||
capacity:
|
||||
storage: 50Gi # 与数据集配额一致即可
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
persistentVolumeReclaimPolicy: Retain # 删除 PV 时保留数据
|
||||
storageClassName: "" # 留空,防止动态 Provisioner 抢占
|
||||
volumeMode: Filesystem
|
||||
local:
|
||||
path: /data/data-import-export # ← 指向节点上 ZFS 挂载目录
|
||||
nodeAffinity:
|
||||
required:
|
||||
nodeSelectorTerms:
|
||||
- matchExpressions:
|
||||
- key: openebs.io/nodeid
|
||||
operator: In
|
||||
values:
|
||||
- node008-zina
|
||||
13
k8s/pvc.yaml
Normal file
13
k8s/pvc.yaml
Normal file
|
|
@ -0,0 +1,13 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: data-import-export-pvc
|
||||
namespace: db # 与 Job 同命名空间
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadWriteOnce
|
||||
resources:
|
||||
requests:
|
||||
storage: 50Gi
|
||||
storageClassName: "" # 必须与 PV 一致
|
||||
volumeName: zfs-data-import-export-pv # ← 显式绑定到刚才创建的 PV
|
||||
28
k8s/rbac.yaml
Normal file
28
k8s/rbac.yaml
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
apiVersion: rbac.authorization.k8s.io/v1
|
||||
kind: Role
|
||||
metadata:
|
||||
name: databridge-role
|
||||
rules:
|
||||
- apiGroups: ["batch"]
|
||||
resources: ["jobs"]
|
||||
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
|
||||
- apiGroups: [""]
|
||||
resources: ["pods", "pods/log"]
|
||||
verbs: ["get", "list", "watch"]
|
||||
- apiGroups: [""]
|
||||
resources: ["persistentvolumeclaims"]
|
||||
verbs: ["get", "list", "create"]
|
||||
|
||||
---
|
||||
apiVersion: rbac.authorization.k8s.io/v1
|
||||
kind: RoleBinding
|
||||
metadata:
|
||||
name: databridge-role-binding
|
||||
subjects:
|
||||
- kind: ServiceAccount
|
||||
name: default
|
||||
namespace: default
|
||||
roleRef:
|
||||
kind: Role
|
||||
name: databridge-role
|
||||
apiGroup: rbac.authorization.k8s.io
|
||||
22
pyproject.toml
Normal file
22
pyproject.toml
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
[build-system]
|
||||
requires = ["setuptools>=61.0", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "tool-databridge"
|
||||
version = "0.1.0"
|
||||
description = "A data pipeline tool"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.11"
|
||||
dependencies = [
|
||||
"pandas==1.5.3",
|
||||
"numpy==1.24.4",
|
||||
# 你可以继续添加其他依赖
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
databridge = "src.main:main" # 可选:命令行入口
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
where = ["src"]
|
||||
5
requirements.txt
Normal file
5
requirements.txt
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
pandas==1.5.3
|
||||
dbfread==2.0.7
|
||||
psycopg2-binary==2.9.6
|
||||
python-dotenv==1.0.0
|
||||
openpyxl>=3.1.0
|
||||
37
scripts/deploy-csv-export.sh
Normal file
37
scripts/deploy-csv-export.sh
Normal file
|
|
@ -0,0 +1,37 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# 默认配置
|
||||
JOB_ID=$(date +%Y%m%d-%H%M%S)
|
||||
IMAGE_REPO=${IMAGE_REPO:-"harbor.dc.teramesh.cn/idrc/tools"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
DATA_PVC_NAME=${DATA_PVC_NAME:-"databridge-data-pvc"}
|
||||
DB_HOST=${DB_HOST:-"postgres-service"}
|
||||
DB_PORT=${DB_PORT:-"5432"}
|
||||
DB_NAME=${DB_NAME:-"energy_data"}
|
||||
DB_USER=${DB_USER:-"db_user"}
|
||||
DB_PASSWORD=${DB_PASSWORD:-"db_password"}
|
||||
EXPORT_QUERY=${EXPORT_QUERY:-"SELECT * FROM source_table"}
|
||||
LOG_LEVEL=${LOG_LEVEL:-"INFO"}
|
||||
|
||||
# 导出变量用于envsubst
|
||||
export JOB_ID IMAGE_REPO IMAGE_TAG DATA_PVC_NAME
|
||||
export DB_HOST DB_PORT DB_NAME DB_USER DB_PASSWORD
|
||||
export EXPORT_QUERY LOG_LEVEL
|
||||
|
||||
# 检查模板文件
|
||||
TEMPLATE_FILE="../k8s/job-templates/csv-export-job.yaml"
|
||||
if [ ! -f "$TEMPLATE_FILE" ]; then
|
||||
echo "Template file not found: $TEMPLATE_FILE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 处理模板
|
||||
OUTPUT_FILE="../k8s/jobs/csv-export-${JOB_ID}.yaml"
|
||||
envsubst < "$TEMPLATE_FILE" > "$OUTPUT_FILE"
|
||||
|
||||
# 部署Job
|
||||
kubectl apply -f "$OUTPUT_FILE"
|
||||
|
||||
echo "Job deployed: databridge-csv-export-${JOB_ID}"
|
||||
echo "To view logs: kubectl logs job/databridge-csv-export-${JOB_ID}"
|
||||
39
scripts/deploy-dbf-import.sh
Normal file
39
scripts/deploy-dbf-import.sh
Normal file
|
|
@ -0,0 +1,39 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# 默认配置
|
||||
JOB_ID=$(date +%Y%m%d-%H%M%S)
|
||||
IMAGE_REPO=${IMAGE_REPO:-"harbor.dc.teramesh.cn/idrc/tools"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
BATCH_SIZE=${BATCH_SIZE:-"1000"}
|
||||
LOG_LEVEL=${LOG_LEVEL:-"INFO"}
|
||||
DATA_PVC_NAME=${DATA_PVC_NAME:-"data-import-export-pvc"}
|
||||
# todo: 下面参数使用时需要修改
|
||||
DB_HOST=${DB_HOST:-"xx-postgres-service"}
|
||||
DB_PORT=${DB_PORT:-"5432"}
|
||||
DB_NAME=${DB_NAME:-"xx"}
|
||||
DB_USER=${DB_USER:-"xx_db_user"}
|
||||
DB_PASSWORD=${DB_PASSWORD:-"xx_db_password"}
|
||||
|
||||
|
||||
# 导出变量用于envsubst
|
||||
export JOB_ID IMAGE_REPO IMAGE_TAG DATA_PVC_NAME
|
||||
export DB_HOST DB_PORT DB_NAME DB_USER DB_PASSWORD
|
||||
export BATCH_SIZE LOG_LEVEL
|
||||
|
||||
# 检查模板文件
|
||||
TEMPLATE_FILE="../k8s/job-templates/dbf-import-job.yaml"
|
||||
if [ ! -f "$TEMPLATE_FILE" ]; then
|
||||
echo "Template file not found: $TEMPLATE_FILE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 处理模板
|
||||
OUTPUT_FILE="../k8s/jobs/dbf-import-job-${JOB_ID}.yaml"
|
||||
envsubst < "$TEMPLATE_FILE" > "$OUTPUT_FILE"
|
||||
|
||||
# 部署Job
|
||||
kubectl apply -f "$OUTPUT_FILE"
|
||||
|
||||
echo "Job deployed: dbf-import-job-${JOB_ID}"
|
||||
echo "To view logs: kubectl logs job/dbf-import-job-${JOB_ID}"
|
||||
23
src/core/config.py
Normal file
23
src/core/config.py
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
import os
|
||||
import logging
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self):
|
||||
self.logger = logging.getLogger(self.__class__.__name__)
|
||||
self.data_root = os.getenv('DATA_PVC_MOUNT_PATH', '/data')
|
||||
|
||||
def get_path(self, *args):
|
||||
"""构建绝对路径"""
|
||||
return os.path.join(self.data_root, *args)
|
||||
|
||||
def get_database_config(self):
|
||||
"""获取数据库配置"""
|
||||
|
||||
return {
|
||||
'host': os.getenv('DB_HOST'),
|
||||
'port': os.getenv('DB_PORT', '5432'),
|
||||
'dbname': os.getenv('DB_NAME'),
|
||||
'user': os.getenv('DB_USER'),
|
||||
'password': os.getenv('DB_PASSWORD')
|
||||
}
|
||||
51
src/core/database.py
Normal file
51
src/core/database.py
Normal file
|
|
@ -0,0 +1,51 @@
|
|||
import psycopg2
|
||||
import logging
|
||||
from psycopg2 import sql
|
||||
from psycopg2.extras import execute_batch
|
||||
|
||||
|
||||
class Database:
|
||||
def __init__(self, host, port, dbname, user, password):
|
||||
self.conn = None
|
||||
self.logger = logging.getLogger(self.__class__.__name__)
|
||||
self.db_config = {
|
||||
'host': host,
|
||||
'port': port,
|
||||
'dbname': dbname,
|
||||
'user': user,
|
||||
'password': password
|
||||
}
|
||||
self.connect()
|
||||
|
||||
def connect(self):
|
||||
try:
|
||||
self.conn = psycopg2.connect(**self.db_config)
|
||||
self.logger.info(f"Connected to database: {self.db_config['dbname']}@{self.db_config['host']}")
|
||||
except Exception as e:
|
||||
self.logger.error(f"Database connection failed: {str(e)}")
|
||||
raise
|
||||
|
||||
def disconnect(self):
|
||||
if self.conn:
|
||||
self.conn.close()
|
||||
self.logger.info("Database connection closed")
|
||||
|
||||
def execute_batch(self, query, data_list):
|
||||
try:
|
||||
with self.conn.cursor() as cursor:
|
||||
execute_batch(cursor, query, data_list)
|
||||
self.conn.commit()
|
||||
self.logger.debug(f"Inserted {len(data_list)} records")
|
||||
return len(data_list)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Batch execution failed: {str(e)}")
|
||||
self.conn.rollback()
|
||||
raise
|
||||
|
||||
def table_exists(self, table_name):
|
||||
with self.conn.cursor() as cursor:
|
||||
cursor.execute(
|
||||
"SELECT EXISTS (SELECT FROM pg_tables WHERE schemaname = 'public' AND tablename = %s)",
|
||||
(table_name,)
|
||||
)
|
||||
return cursor.fetchone()[0]
|
||||
0
src/core/init.py
Normal file
0
src/core/init.py
Normal file
51
src/core/utils.py
Normal file
51
src/core/utils.py
Normal file
|
|
@ -0,0 +1,51 @@
|
|||
import os
|
||||
import logging
|
||||
import hashlib
|
||||
from datetime import datetime
|
||||
|
||||
def setup_logging(level="INFO"):
|
||||
"""配置日志"""
|
||||
logging.basicConfig(
|
||||
level=level,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=[logging.StreamHandler()]
|
||||
)
|
||||
|
||||
def generate_job_id(prefix=""):
|
||||
"""生成唯一Job ID"""
|
||||
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
return f"{prefix}{timestamp}"
|
||||
|
||||
def validate_directory(path, create=True):
|
||||
"""验证目录是否存在,可选创建"""
|
||||
if not os.path.exists(path):
|
||||
if create:
|
||||
os.makedirs(path, exist_ok=True)
|
||||
logging.info(f"Created directory: {path}")
|
||||
else:
|
||||
raise ValueError(f"Directory not found: {path}")
|
||||
return True
|
||||
|
||||
def calculate_file_hash(filepath, algorithm="md5"):
|
||||
"""计算文件哈希值"""
|
||||
hasher = hashlib.new(algorithm)
|
||||
with open(filepath, 'rb') as f:
|
||||
for chunk in iter(lambda: f.read(4096), b''):
|
||||
hasher.update(chunk)
|
||||
return hasher.hexdigest()
|
||||
|
||||
def size_to_human_readable(size_bytes):
|
||||
"""字节数转可读格式"""
|
||||
for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
|
||||
if size_bytes < 1024.0:
|
||||
return f"{size_bytes:.2f} {unit}"
|
||||
size_bytes /= 1024.0
|
||||
return f"{size_bytes:.2f} PB"
|
||||
|
||||
def parse_env_vars(prefix="DB_"):
|
||||
"""解析带前缀的环境变量"""
|
||||
return {
|
||||
k[len(prefix):].lower(): v
|
||||
for k, v in os.environ.items()
|
||||
if k.startswith(prefix)
|
||||
}
|
||||
54
src/main.py
Normal file
54
src/main.py
Normal file
|
|
@ -0,0 +1,54 @@
|
|||
import argparse
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
|
||||
from core.config import Config
|
||||
from core.utils import setup_logging
|
||||
|
||||
|
||||
def main():
|
||||
# 设置命令行参数
|
||||
parser = argparse.ArgumentParser(description='Databridge Data Pipeline')
|
||||
parser.add_argument('--pipeline', type=str, required=True,
|
||||
help='Pipeline type to execute')
|
||||
args = parser.parse_args()
|
||||
|
||||
# 配置日志
|
||||
log_level = os.getenv('LOG_LEVEL', 'INFO')
|
||||
setup_logging(log_level)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
try:
|
||||
# 动态加载管道模块
|
||||
try:
|
||||
pipeline_module = importlib.import_module(f'pipelines.{args.pipeline}')
|
||||
except ImportError as e:
|
||||
logger.error(f"Pipeline module not found: {args.pipeline}")
|
||||
raise
|
||||
|
||||
# 获取管道类 (命名约定: PipelineName + "Pipeline")
|
||||
pipeline_class_name = args.pipeline.replace('_', ' ').title().replace(' ', '') + 'Pipeline'
|
||||
if not hasattr(pipeline_module, pipeline_class_name):
|
||||
logger.error(f"Pipeline class not found: {pipeline_class_name}")
|
||||
raise ImportError(f"Class {pipeline_class_name} not found in {args.pipeline} module")
|
||||
|
||||
PipelineClass = getattr(pipeline_module, pipeline_class_name)
|
||||
|
||||
# 创建配置和管道实例
|
||||
config = Config()
|
||||
pipeline = PipelineClass(config)
|
||||
|
||||
# 运行管道
|
||||
pipeline.run()
|
||||
|
||||
logger.info("Pipeline completed successfully")
|
||||
exit(0)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Pipeline execution failed: {str(e)}", exc_info=True)
|
||||
exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
30
src/pipelines/base_pipeline.py
Normal file
30
src/pipelines/base_pipeline.py
Normal file
|
|
@ -0,0 +1,30 @@
|
|||
import abc
|
||||
import logging
|
||||
|
||||
|
||||
class BasePipeline(metaclass=abc.ABCMeta):
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.logger = logging.getLogger(self.__class__.__name__)
|
||||
|
||||
@abc.abstractmethod
|
||||
def validate_config(self):
|
||||
"""验证管道配置"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def process(self):
|
||||
"""执行管道处理"""
|
||||
pass
|
||||
|
||||
def run(self):
|
||||
"""运行管道"""
|
||||
try:
|
||||
self.logger.info(f"Starting {self.__class__.__name__} pipeline")
|
||||
self.validate_config()
|
||||
result = self.process()
|
||||
self.logger.info(f"Pipeline completed: {self.__class__.__name__}")
|
||||
return result
|
||||
except Exception as e:
|
||||
self.logger.error(f"Pipeline failed: {str(e)}", exc_info=True)
|
||||
raise
|
||||
58
src/pipelines/csv_export.py
Normal file
58
src/pipelines/csv_export.py
Normal file
|
|
@ -0,0 +1,58 @@
|
|||
import os
|
||||
import csv
|
||||
import logging
|
||||
from core.database import Database
|
||||
from core.utils import size_to_human_readable
|
||||
from base_pipeline import BasePipeline
|
||||
|
||||
|
||||
class CSVExportPipeline(BasePipeline):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.data_root = os.getenv('DATA_PVC_MOUNT_PATH', '/data')
|
||||
self.output_dir = os.getenv('OUTPUT_DIR', os.path.join(self.data_root, 'output'))
|
||||
self.query = os.getenv('EXPORT_QUERY', 'SELECT * FROM source_table')
|
||||
|
||||
def validate_config(self):
|
||||
# 确保输出目录存在
|
||||
if not os.path.exists(self.output_dir):
|
||||
os.makedirs(self.output_dir, exist_ok=True)
|
||||
self.logger.info(f"Created output directory: {self.output_dir}")
|
||||
|
||||
def process(self):
|
||||
# 连接数据库
|
||||
db_config = self.config.get_database_config()
|
||||
db = Database(**db_config)
|
||||
|
||||
# 执行查询并导出
|
||||
output_file = os.path.join(self.output_dir, f"export_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv")
|
||||
self.logger.info(f"Exporting data to: {output_file}")
|
||||
|
||||
with open(output_file, 'w', newline='') as csvfile:
|
||||
writer = None
|
||||
row_count = 0
|
||||
|
||||
with db.conn.cursor() as cursor:
|
||||
cursor.execute(self.query)
|
||||
|
||||
# 获取列名
|
||||
column_names = [desc[0] for desc in cursor.description]
|
||||
writer = csv.DictWriter(csvfile, fieldnames=column_names)
|
||||
writer.writeheader()
|
||||
|
||||
# 写入数据
|
||||
for row in cursor:
|
||||
row_dict = dict(zip(column_names, row))
|
||||
writer.writerow(row_dict)
|
||||
row_count += 1
|
||||
|
||||
if row_count % 1000 == 0:
|
||||
self.logger.info(f"Exported {row_count} rows...")
|
||||
|
||||
# 关闭数据库连接
|
||||
db.disconnect()
|
||||
|
||||
# 记录结果
|
||||
file_size = os.path.getsize(output_file)
|
||||
self.logger.info(f"Export completed: {row_count} rows, {size_to_human_readable(file_size)}")
|
||||
return row_count
|
||||
185
src/pipelines/dbf_to_postgres.py
Normal file
185
src/pipelines/dbf_to_postgres.py
Normal file
|
|
@ -0,0 +1,185 @@
|
|||
import os
|
||||
import pandas as pd
|
||||
from dbfread import DBF
|
||||
from itertools import islice
|
||||
from datetime import datetime, timedelta
|
||||
import logging
|
||||
from core.database import Database
|
||||
from core.utils import size_to_human_readable, calculate_file_hash
|
||||
from pipelines.base_pipeline import BasePipeline
|
||||
|
||||
|
||||
class DbfToPostgresPipeline(BasePipeline):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
# todo:本地调试打开
|
||||
# self.data_root = 'D:\disney_test'
|
||||
# self.mapping_file = 'D:\disney_test\disney-mapping.xlsx'
|
||||
# todo:本地调试打开
|
||||
self.data_root = os.getenv('DATA_PVC_MOUNT_PATH', '/data')
|
||||
self.mapping_file = os.getenv('MAPPING_FILE')
|
||||
|
||||
self.dbf_dir = os.getenv('DBF_INPUT_DIR', os.path.join(self.data_root, 'dbf-input'))
|
||||
|
||||
self.db = None
|
||||
|
||||
def validate_config(self):
|
||||
# 确保目录存在
|
||||
if not os.path.exists(self.dbf_dir):
|
||||
raise ValueError(f"DBF directory not found: {self.dbf_dir}")
|
||||
|
||||
# 如果有映射文件,验证存在
|
||||
if self.mapping_file and not os.path.exists(self.mapping_file):
|
||||
self.logger.warning(f"Mapping file not found: {self.mapping_file}")
|
||||
self.mapping_file = None
|
||||
|
||||
def load_mapping(self):
|
||||
"""加载映射关系"""
|
||||
if not self.mapping_file:
|
||||
self.logger.info("No mapping file provided, using default mapping")
|
||||
return {}
|
||||
|
||||
try:
|
||||
self.logger.info(f"Loading mapping from {self.mapping_file}")
|
||||
mapping_df = pd.read_excel(self.mapping_file, sheet_name="Mapping")
|
||||
|
||||
# 清理数据
|
||||
mapping_df = mapping_df.dropna(subset=['AS_SERIAL', 'ID', 'data_field_sequence_id'])
|
||||
mapping_df = mapping_df[['AS_SERIAL', 'ID', 'data_field_sequence_id',
|
||||
'device_instance_capability_id', 'device_capability_point_id']]
|
||||
|
||||
# 创建映射字典
|
||||
mapping_dict = {}
|
||||
for _, row in mapping_df.iterrows():
|
||||
key = (str(row['AS_SERIAL']), str(row['ID']))
|
||||
if key not in mapping_dict:
|
||||
mapping_dict[key] = []
|
||||
|
||||
mapping_dict[key].append({
|
||||
'seq_id': int(row['data_field_sequence_id']),
|
||||
'cap_id': int(row['device_instance_capability_id']),
|
||||
'point_id': int(row['device_capability_point_id'])
|
||||
})
|
||||
|
||||
self.logger.info(f"Loaded {len(mapping_dict)} mapping entries")
|
||||
return mapping_dict
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to load mapping: {str(e)}")
|
||||
return {}
|
||||
|
||||
def process(self):
|
||||
# 加载映射关系
|
||||
mapping_dict = self.load_mapping()
|
||||
|
||||
# 连接数据库
|
||||
|
||||
# todo:本地调试时打开
|
||||
db_config = self.config.get_database_config()
|
||||
self.db = Database(**db_config)
|
||||
# todo:本地调试时打开
|
||||
|
||||
# 处理文件
|
||||
total_processed = 0
|
||||
for filename in os.listdir(self.dbf_dir):
|
||||
if filename.casefold().endswith('.dbf'):
|
||||
file_path = os.path.join(self.dbf_dir, filename)
|
||||
processed = self.process_file(file_path, mapping_dict)
|
||||
total_processed += processed
|
||||
self.logger.info(f"Processed {processed} records from {filename}")
|
||||
|
||||
# 关闭数据库连接
|
||||
# todo:本地调试时打开
|
||||
self.db.disconnect()
|
||||
# todo:本地调试时打开
|
||||
return total_processed
|
||||
|
||||
def process_file(self, file_path, mapping_dict):
|
||||
self.logger.info(f"Processing file: {os.path.basename(file_path)}")
|
||||
try:
|
||||
# 获取文件信息
|
||||
file_size = os.path.getsize(file_path)
|
||||
file_hash = calculate_file_hash(file_path)
|
||||
self.logger.info(f"File info: Size={size_to_human_readable(file_size)}, Hash={file_hash}")
|
||||
|
||||
dbf_table = DBF(file_path, encoding='utf-8')
|
||||
batch_data = []
|
||||
processed_records = 0
|
||||
batch_size = int(os.getenv('BATCH_SIZE', 1000))
|
||||
self.logger.info(f"the DBF file: {os.path.basename(file_path)} have record: #{len(dbf_table.records)}")
|
||||
|
||||
# 分片读取是个大坑,不能分片
|
||||
# dbf_table = DBF(file_path, load=False, encoding='utf-8')
|
||||
# chunk_idx = 0
|
||||
# while True:
|
||||
# chunk = list(islice(dbf_table._iter_records(), 100000))
|
||||
# if not chunk: # 读完了
|
||||
# break
|
||||
# chunk_idx += 1
|
||||
# # 处理这十万行
|
||||
# self.logger.info(f"Handle chunk: #{chunk_idx} of file: {os.path.basename(file_path)}")
|
||||
for record in dbf_table:
|
||||
try:
|
||||
as_serial = str(record.get('AS_SERIAL', '')).strip()
|
||||
device_id = str(record.get('ID', '')).strip()
|
||||
key = (as_serial, device_id)
|
||||
|
||||
# 跳过没有映射的记录
|
||||
if key not in mapping_dict:
|
||||
continue
|
||||
|
||||
# 处理时间 (+8小时)
|
||||
dt_str = record.get('DATETIME', '')
|
||||
if not dt_str:
|
||||
continue
|
||||
|
||||
original_time = datetime.strptime(dt_str, '%Y-%m-%d %H:%M:%S')
|
||||
target_time = original_time + timedelta(hours=8)
|
||||
formatted_time = target_time.strftime('%Y-%m-%d %H:%M:%S+00')
|
||||
|
||||
# 处理每个映射
|
||||
for mapping in mapping_dict[key]:
|
||||
data_field = f"DATA{mapping['seq_id']:02d}"
|
||||
value = record.get(data_field)
|
||||
if value is None:
|
||||
continue
|
||||
|
||||
batch_data.append((
|
||||
formatted_time,
|
||||
mapping['cap_id'],
|
||||
mapping['point_id'],
|
||||
float(value)
|
||||
))
|
||||
|
||||
# 批量插入
|
||||
if len(batch_data) >= batch_size:
|
||||
# todo:本地调试先注释掉
|
||||
self.db.execute_batch(
|
||||
"INSERT INTO target_table (t, device_instance_capability_id, point_id, value) VALUES (%s, %s, %s, %s)",
|
||||
batch_data
|
||||
)
|
||||
# todo:本地调试先注释掉
|
||||
processed_records += len(batch_data)
|
||||
self.logger.debug(f"Processed {processed_records} records from {os.path.basename(file_path)}")
|
||||
batch_data = []
|
||||
|
||||
except Exception as e:
|
||||
self.logger.warning(f"Skipping record due to error: {str(e)}")
|
||||
continue
|
||||
|
||||
# 插入剩余记录
|
||||
if batch_data:
|
||||
# todo:本地调试先注释掉
|
||||
self.db.execute_batch(
|
||||
"INSERT INTO target_table (t, device_instance_capability_id, point_id, value) VALUES (%s, %s, %s, %s)",
|
||||
batch_data
|
||||
)
|
||||
# todo:本地调试先注释掉
|
||||
processed_records += len(batch_data)
|
||||
self.logger.debug(f"Processed {processed_records} records from {os.path.basename(file_path)}")
|
||||
|
||||
self.logger.info(f"Processed {processed_records} records from {os.path.basename(file_path)}")
|
||||
return processed_records
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to process file {file_path}: {str(e)}")
|
||||
return 0
|
||||
0
src/pipelines/init.py
Normal file
0
src/pipelines/init.py
Normal file
Loading…
Reference in New Issue
Block a user