This commit is contained in:
parent
134e31a5bb
commit
af11bddb60
59
k8s/job-templates/dbf-import-ctllog-pwc-job.yaml
Normal file
59
k8s/job-templates/dbf-import-ctllog-pwc-job.yaml
Normal file
|
|
@ -0,0 +1,59 @@
|
|||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
name: dbf-import-ctllog-pwc-job-{{JOB_ID}}
|
||||
namespace: {{NAMESPACE}}
|
||||
spec:
|
||||
ttlSecondsAfterFinished: 86400
|
||||
backoffLimit: 0
|
||||
template:
|
||||
spec:
|
||||
affinity:
|
||||
nodeAffinity:
|
||||
requiredDuringSchedulingIgnoredDuringExecution:
|
||||
nodeSelectorTerms:
|
||||
- matchExpressions:
|
||||
- key: {{JOB_HOST_KEY}}
|
||||
operator: In
|
||||
values:
|
||||
- {{JOB_HOST_NAME}}
|
||||
containers:
|
||||
- name: importer
|
||||
image: {{IMAGE_REPO}}/databridge:{{IMAGE_TAG}}
|
||||
args: ["--pipeline", "dbf_to_postgres_ctllog-pwc"]
|
||||
env:
|
||||
- name: DATA_PVC_MOUNT_PATH
|
||||
value: "/data"
|
||||
- name: DBF_INPUT_DIR
|
||||
value: "/data/dbf-input"
|
||||
- name: MAPPING_FILE
|
||||
value: "/data/disney-mapping-elec-v3.xlsx"
|
||||
- name: DB_HOST
|
||||
value: "{{DB_HOST}}"
|
||||
- name: DB_PORT
|
||||
value: "{{DB_PORT}}"
|
||||
- name: DB_NAME
|
||||
value: "{{DB_NAME}}"
|
||||
- name: DB_USER
|
||||
value: "{{DB_USER}}"
|
||||
- name: DB_PASSWORD
|
||||
value: "{{DB_PASSWORD}}"
|
||||
- name: BATCH_SIZE
|
||||
value: "{{BATCH_SIZE}}"
|
||||
- name: LOG_LEVEL
|
||||
value: "{{LOG_LEVEL}}"
|
||||
volumeMounts:
|
||||
- name: data-volume
|
||||
mountPath: "/data"
|
||||
resources:
|
||||
requests:
|
||||
cpu: "500m"
|
||||
memory: "800Mi"
|
||||
limits:
|
||||
cpu: "1000m"
|
||||
memory: "1700Mi"
|
||||
volumes:
|
||||
- name: data-volume
|
||||
persistentVolumeClaim:
|
||||
claimName: {{DATA_PVC_NAME}}
|
||||
restartPolicy: Never
|
||||
55
scripts/deploy-dbf-import-ctllog-pwc-disney.sh
Normal file
55
scripts/deploy-dbf-import-ctllog-pwc-disney.sh
Normal file
|
|
@ -0,0 +1,55 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# 默认配置
|
||||
JOB_ID=$(date +%Y%m%d-%H%M%S)
|
||||
IMAGE_REPO=${IMAGE_REPO:-"harbor.dc.teramesh.cn/library/tools"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"dev"}
|
||||
BATCH_SIZE=${BATCH_SIZE:-"50"}
|
||||
LOG_LEVEL=${LOG_LEVEL:-"INFO"}
|
||||
DATA_PVC_NAME=${DATA_PVC_NAME:-"data-import-export-pvc"}
|
||||
JOB_HOST_KEY=${JOB_HOST_KEY:-"kubernetes.io/hostname"}
|
||||
JOB_HOST_NAME=${JOB_HOST_NAME:-"idrc-disney-1"}
|
||||
# 数据库配置(使用时需要修改)
|
||||
DB_HOST=${DB_HOST:-"db"}
|
||||
DB_PORT=${DB_PORT:-"6432"}
|
||||
DB_NAME=${DB_NAME:-"idrc"}
|
||||
DB_USER=${DB_USER:-"teramesh"}
|
||||
DB_PASSWORD=${DB_PASSWORD:-"2iqTCHwnf75stGBzM8le"}
|
||||
|
||||
NAMESPACE=${NAMESPACE:-"default"}
|
||||
|
||||
# 检查模板文件
|
||||
TEMPLATE_FILE="dbf-import-ctllog-pwc-job.yaml"
|
||||
if [ ! -f "$TEMPLATE_FILE" ]; then
|
||||
echo "Template file not found: $TEMPLATE_FILE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 直接替换模板变量(不使用envsubst)
|
||||
OUTPUT_FILE="dbf-import-ctllog-pwc-job-${JOB_ID}.yaml"
|
||||
sed -e "s|{{JOB_ID}}|$JOB_ID|g" \
|
||||
-e "s|{{NAMESPACE}}|$NAMESPACE|g" \
|
||||
-e "s|{{IMAGE_REPO}}|$IMAGE_REPO|g" \
|
||||
-e "s|{{IMAGE_TAG}}|$IMAGE_TAG|g" \
|
||||
-e "s|{{DATA_PVC_NAME}}|$DATA_PVC_NAME|g" \
|
||||
-e "s|{{JOB_HOST_KEY}}|$JOB_HOST_KEY|g" \
|
||||
-e "s|{{JOB_HOST_NAME}}|$JOB_HOST_NAME|g" \
|
||||
-e "s|{{DB_HOST}}|$DB_HOST|g" \
|
||||
-e "s|{{DB_PORT}}|$DB_PORT|g" \
|
||||
-e "s|{{DB_NAME}}|$DB_NAME|g" \
|
||||
-e "s|{{DB_USER}}|$DB_USER|g" \
|
||||
-e "s|{{DB_PASSWORD}}|$DB_PASSWORD|g" \
|
||||
-e "s|{{BATCH_SIZE}}|$BATCH_SIZE|g" \
|
||||
-e "s|{{LOG_LEVEL}}|$LOG_LEVEL|g" \
|
||||
"$TEMPLATE_FILE" > "$OUTPUT_FILE"
|
||||
|
||||
# 部署前验证
|
||||
echo "Validating generated YAML..."
|
||||
kubectl apply -f "$OUTPUT_FILE" -n "$NAMESPACE" --dry-run=client
|
||||
|
||||
# 部署Job
|
||||
kubectl apply -f "$OUTPUT_FILE" -n "$NAMESPACE"
|
||||
|
||||
echo "Job deployed in namespace $NAMESPACE: dbf-import-ctllog-pwc-job-${JOB_ID}"
|
||||
echo "To view logs: kubectl logs job/dbf-import-ctllog-pwc-job-${JOB_ID} -n $NAMESPACE"
|
||||
55
scripts/deploy-dbf-import-ctllog-pwc-test.sh
Normal file
55
scripts/deploy-dbf-import-ctllog-pwc-test.sh
Normal file
|
|
@ -0,0 +1,55 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# 默认配置
|
||||
JOB_ID=$(date +%Y%m%d-%H%M%S)
|
||||
IMAGE_REPO=${IMAGE_REPO:-"harbor.dc.teramesh.cn/library/tools"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"dev"}
|
||||
BATCH_SIZE=${BATCH_SIZE:-"1000"}
|
||||
LOG_LEVEL=${LOG_LEVEL:-"INFO"}
|
||||
DATA_PVC_NAME=${DATA_PVC_NAME:-"data-import-export-pvc"}
|
||||
JOB_HOST_KEY=${JOB_HOST_KEY:-"openebs.io/nodeid"}
|
||||
JOB_HOST_NAME=${JOB_HOST_NAME:-"node008-zina"}
|
||||
# 数据库配置(使用时需要修改)
|
||||
DB_HOST=${DB_HOST:-"test-db.db.svc.cluster.local"}
|
||||
DB_PORT=${DB_PORT:-"6432"}
|
||||
DB_NAME=${DB_NAME:-"idrc"}
|
||||
DB_USER=${DB_USER:-"idrc"}
|
||||
DB_PASSWORD=${DB_PASSWORD:-"a8aa283c1b3ca0bdfe1d2669dd400f3d"}
|
||||
|
||||
NAMESPACE=${NAMESPACE:-"db"}
|
||||
|
||||
# 检查模板文件
|
||||
TEMPLATE_FILE="dbf-import-ctllog-pwc-job.yaml"
|
||||
if [ ! -f "$TEMPLATE_FILE" ]; then
|
||||
echo "Template file not found: $TEMPLATE_FILE"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 直接替换模板变量(不使用envsubst)
|
||||
OUTPUT_FILE="dbf-import-ctllog-pwc-job-${JOB_ID}.yaml"
|
||||
sed -e "s|{{JOB_ID}}|$JOB_ID|g" \
|
||||
-e "s|{{NAMESPACE}}|$NAMESPACE|g" \
|
||||
-e "s|{{IMAGE_REPO}}|$IMAGE_REPO|g" \
|
||||
-e "s|{{IMAGE_TAG}}|$IMAGE_TAG|g" \
|
||||
-e "s|{{DATA_PVC_NAME}}|$DATA_PVC_NAME|g" \
|
||||
-e "s|{{JOB_HOST_KEY}}|$JOB_HOST_KEY|g" \
|
||||
-e "s|{{JOB_HOST_NAME}}|$JOB_HOST_NAME|g" \
|
||||
-e "s|{{DB_HOST}}|$DB_HOST|g" \
|
||||
-e "s|{{DB_PORT}}|$DB_PORT|g" \
|
||||
-e "s|{{DB_NAME}}|$DB_NAME|g" \
|
||||
-e "s|{{DB_USER}}|$DB_USER|g" \
|
||||
-e "s|{{DB_PASSWORD}}|$DB_PASSWORD|g" \
|
||||
-e "s|{{BATCH_SIZE}}|$BATCH_SIZE|g" \
|
||||
-e "s|{{LOG_LEVEL}}|$LOG_LEVEL|g" \
|
||||
"$TEMPLATE_FILE" > "$OUTPUT_FILE"
|
||||
|
||||
# 部署前验证
|
||||
echo "Validating generated YAML..."
|
||||
kubectl apply -f "$OUTPUT_FILE" -n "$NAMESPACE" --dry-run=client
|
||||
|
||||
# 部署Job
|
||||
kubectl apply -f "$OUTPUT_FILE" -n "$NAMESPACE"
|
||||
|
||||
echo "Job deployed in namespace $NAMESPACE: dbf-import-ctllog-pwc-job-${JOB_ID}"
|
||||
echo "To view logs: kubectl logs job/dbf-import-ctllog-pwc-job-${JOB_ID} -n $NAMESPACE"
|
||||
202
src/pipelines/dbf_to_postgres_ctllog_pwr.py
Normal file
202
src/pipelines/dbf_to_postgres_ctllog_pwr.py
Normal file
|
|
@ -0,0 +1,202 @@
|
|||
import os
|
||||
import csv
|
||||
import pandas as pd
|
||||
from dbfread import DBF
|
||||
from itertools import islice
|
||||
from datetime import datetime, timedelta
|
||||
import logging
|
||||
from core.database import Database
|
||||
from core.utils import size_to_human_readable, calculate_file_hash
|
||||
from pipelines.base_pipeline import BasePipeline
|
||||
|
||||
class DbfToPostgresCtllogPwrPipeline(BasePipeline):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
# todo:本地调试打开
|
||||
self.data_root = 'D:\disney_test'
|
||||
self.mapping_file = 'D:\disney_test\disney-mapping-elec-v3.xlsx'
|
||||
# todo:本地调试打开
|
||||
# self.data_root = os.getenv('DATA_PVC_MOUNT_PATH', '/data')
|
||||
# self.mapping_file = os.getenv('MAPPING_FILE')
|
||||
self.dbf_dir = os.getenv('DBF_INPUT_DIR', os.path.join(self.data_root, 'dbf-input'))
|
||||
|
||||
# todo:debug use
|
||||
self.csv_file_path = 'D:\disney_test\debug_controller_log_elec.csv'
|
||||
# 初始化CSV文件
|
||||
if not os.path.exists(self.csv_file_path):
|
||||
with open(self.csv_file_path, 'w') as f:
|
||||
csv.writer(f).writerow(
|
||||
['created', 'control_group_controller_id', 'point_id', 'real_value'])
|
||||
# todo:debug use
|
||||
|
||||
self.db = None
|
||||
self.group_cache = {}
|
||||
self.batch_size = int(os.getenv('BATCH_SIZE', 1000))
|
||||
self.batch_data = []
|
||||
self.processed_records = 0
|
||||
self.current_date = None # 当前处理的日期
|
||||
|
||||
|
||||
def validate_config(self):
|
||||
# 确保目录存在
|
||||
if not os.path.exists(self.dbf_dir):
|
||||
raise ValueError(f"DBF directory not found: {self.dbf_dir}")
|
||||
|
||||
# 如果有映射文件,验证存在
|
||||
if self.mapping_file and not os.path.exists(self.mapping_file):
|
||||
self.logger.warning(f"Mapping file not found: {self.mapping_file}")
|
||||
self.mapping_file = None
|
||||
|
||||
def load_mapping(self):
|
||||
"""加载映射关系"""
|
||||
if not self.mapping_file:
|
||||
self.logger.info("No mapping file provided, using default mapping")
|
||||
return {}
|
||||
|
||||
try:
|
||||
self.logger.info(f"Loading mapping from {self.mapping_file}")
|
||||
mapping_df = pd.read_excel(self.mapping_file, sheet_name="Mapping")
|
||||
|
||||
# 清理数据 - 只保留有ACCOUNT值的行
|
||||
mapping_df = mapping_df.dropna(subset=['ACCOUNT'])
|
||||
|
||||
# 创建映射字典 {ACCOUNT: [mapping_entries]}
|
||||
mapping_dict = {}
|
||||
for _, row in mapping_df.iterrows():
|
||||
account = str(row['ACCOUNT'])
|
||||
if account not in mapping_dict:
|
||||
mapping_dict[account] = []
|
||||
|
||||
mapping_dict[account].append({
|
||||
'control_group_controller_id': int(row['control_group_controller_id']),
|
||||
'controller_point_id': int(row['controller_point_id']),
|
||||
'data_field_name': row['data_field_name']
|
||||
})
|
||||
|
||||
self.logger.info(f"Loaded {len(mapping_dict)} mapping entries")
|
||||
return mapping_dict
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to load mapping: {str(e)}")
|
||||
return {}
|
||||
|
||||
|
||||
def process(self):
|
||||
# 加载映射关系
|
||||
mapping_dict = self.load_mapping()
|
||||
|
||||
# 连接数据库
|
||||
# todo:本地调试时关闭
|
||||
# db_config = self.config.get_database_config()
|
||||
# self.db = Database(**db_config)
|
||||
# todo:本地调试时关闭
|
||||
|
||||
# 处理文件
|
||||
total_processed = 0
|
||||
for filename in os.listdir(self.dbf_dir):
|
||||
if filename.casefold().endswith('.dbf'):
|
||||
file_path = os.path.join(self.dbf_dir, filename)
|
||||
processed = self.process_file(file_path, mapping_dict)
|
||||
total_processed += processed
|
||||
self.logger.info(f"Processed {processed} records from {filename}")
|
||||
|
||||
# 关闭数据库连接
|
||||
# todo:本地调试时关闭
|
||||
# self.db.disconnect()
|
||||
# todo:本地调试时关闭
|
||||
return total_processed
|
||||
|
||||
def process_file(self, file_path, mapping_dict):
|
||||
self.logger.info(f"Processing file: {os.path.basename(file_path)}")
|
||||
try:
|
||||
# 获取文件信息
|
||||
file_size = os.path.getsize(file_path)
|
||||
file_hash = calculate_file_hash(file_path)
|
||||
self.logger.info(f"File info: Size={size_to_human_readable(file_size)}, Hash={file_hash}")
|
||||
dbf_table = DBF(file_path, encoding='utf-8', ignore_missing_memofile=True)
|
||||
self.logger.info(f"the DBF file: {os.path.basename(file_path)} have record: #{len(dbf_table.records)}")
|
||||
|
||||
# 处理DBF表
|
||||
for record in dbf_table:
|
||||
self.process_record(record, mapping_dict)
|
||||
|
||||
# 确保所有剩余数据都被处理
|
||||
self.final_flush()
|
||||
|
||||
self.logger.info(f"Processed {self.processed_records} records from {os.path.basename(file_path)}")
|
||||
return self.processed_records
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Failed to process file {file_path}: {str(e)}")
|
||||
return 0
|
||||
|
||||
def process_record(self, record, mapping_dict):
|
||||
"""处理单个记录"""
|
||||
try:
|
||||
"""转换单个DBF记录为多行目标格式"""
|
||||
account = str(record.get('ACCOUNT', ''))
|
||||
if not account or account not in mapping_dict:
|
||||
return []
|
||||
|
||||
transformed = []
|
||||
for mapping in mapping_dict[account]:
|
||||
data_field = mapping['data_field_name']
|
||||
|
||||
# 根据字段类型选择源字段
|
||||
if data_field == "MAXIMUM":
|
||||
created = record.get('TIMEDATEMA')
|
||||
real_value = record.get('MAXIMUM')
|
||||
elif data_field == "TOTALIZE":
|
||||
created = record.get('TIMEDATE')
|
||||
real_value = record.get('TOTALIZE')
|
||||
else:
|
||||
continue # 跳过不支持的类型
|
||||
|
||||
# 检查必要字段是否存在
|
||||
if created is None or real_value is None:
|
||||
continue
|
||||
|
||||
created_str = created.strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] + '+00'
|
||||
|
||||
self.batch_data.append((
|
||||
created_str,
|
||||
mapping['control_group_controller_id'],
|
||||
mapping['controller_point_id'],
|
||||
real_value
|
||||
))
|
||||
|
||||
if len(self.batch_data) >= self.batch_size:
|
||||
self.flush_batch()
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error processing record: {e}")
|
||||
|
||||
def flush_batch(self):
|
||||
"""执行批量插入并清空批次数据"""
|
||||
if not self.batch_data:
|
||||
return
|
||||
|
||||
# 实际插入数据库
|
||||
# self.db.execute_batch(
|
||||
# "INSERT INTO controller_log (created, control_group_controller_id, point_id, real_value) VALUES (%s, %s, %s, %s)",
|
||||
# [(data[0], data[1], data[2], data[3]) for data in self.batch_data]
|
||||
# )
|
||||
|
||||
# todo: debug时写入CSV(调试用)
|
||||
with open(self.csv_file_path, "a", newline="") as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerows(self.batch_data)
|
||||
# todo: debug时写入CSV
|
||||
|
||||
# 更新处理记录数
|
||||
processed_count = len(self.batch_data)
|
||||
self.processed_records += processed_count
|
||||
self.logger.info(f"Inserted {processed_count} records, total {self.processed_records}")
|
||||
|
||||
# 清空批次数据
|
||||
self.batch_data = []
|
||||
|
||||
def final_flush(self):
|
||||
# 刷新剩余的批次数据
|
||||
self.flush_batch()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user